Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblast response and analyses of apatite coating.
نویسندگان
چکیده
PURPOSE Calcium-silicate cements have been recently proposed for application in dentistry as root-end filling and root-perforation repair materials. The aim of this study was to investigate the effect of ageing of experimental calcium-silicate cements on the chemistry, morphology and in vitro bioactivity of the surface, as well as on osteoblast viability and proliferation. METHODS Two experimental cements (wTC-Bi, containing bismuth oxide and wTC), mainly based on dicalcium-silicate and tricalcium-silicate, were prepared and tested for their bioactivity after soaking in Dulbecco's phosphate buffered saline (DPBS), used as simulated body fluid. Human marrow stromal cells (HMSC) were seeded on the cements maintained in DPBS for 5 hr (non-aged group), 14 and 28 days (aged group). Cell viability was assessed by the Alamar blueTM test and morphology by scanning electron microscopy (SEM) at different time endpoints. The surface of the soaked cements was analyzed by environmental scanning electron microscopy or SEM coupled with energy dispersive X-ray microanalysis (ESEM/EDX or SEM/EDX respectively) and the micro-Raman technique. RESULTS The ESEM/EDX results showed a uniform surface composed of CSH hydrogel (mainly derived from the hydration of belite and alite) on both non-aged cements. Micro-Raman spectroscopy revealed the presence of calcium carbonate, anhydrite, ettringite, alite and belite. The SEM/EDX data showed an irregular calcium-phosphate multi-layered biocoating with many sharp and protruding crystals on both the aged cements. Micro-Raman spectroscopy revealed crystalline apatite and calcite. The osteoblast response results showed that both the experimental cements exerted no acute toxicity in the cell assay systems. The non-aged samples promoted greater cell growth. SEM showed cells well spread and adherent to the non-aged materials. A reduced number of attached cells was noticed on the aged cements. Bismuth oxide-containing cement allowed a reduced cell viability suggesting some cytotoxic effects. However, the thick biocoating formed on the 28-day aged samples lowered the deleterious effect of bismuth oxide on cell growth. Actually, micro-Raman spectroscopy revealed progressive bismuth oxide depletion on the wTC-Bi surface, due to the increased thickness of the apatite deposit. CONCLUSIONS The study demonstrated that (1) these materials support osteogenic cells growth and may induce early bone formation, (2) the ageing in DPBS reduced the growth of HMSC, but eliminated the deleterious effect of the bismuth oxide on cell growth. In conclusion, the experimental cements have adequate biological properties to be used as root-end/root repair filling materials or pulp capping materials.
منابع مشابه
Effect of Alkali and Heat Treatment on Biomimetic HA Coating on Ti6Al4V
In this study, time of calcium phosphate formation on Ti6Al4V alloy with or without alkali and heat treatments was investigated. Specimens were soaked in 0, 5, 10 M solutions of NaOH at temperatures of 60 or 80 °C for 24, 72 h. Their surfaces were characterized using scanning electron microscopy and thin film X-ray diffraction. It was found that optimum condition is 72h soaking in 5 M NaOH in 8...
متن کاملPreparation and Characterization of Hydroxyapatite Coating on Ti6Al4V Cylinders by Combination of Alkali-Heat Treatments and Biomimetic Method
Biomimetic method was used to apply hydroxyapatite (HA) coating onto Ti6Al4V cylinders. This process is a physicochemical method in which a substrate is soaked in a solution simulating the physiological conditions, for a period of time enough to form a desirable layer of the calcium phosphate on the substrate. In the present study, specimens were soaked in 5, 10 M solutions of NaOH at temperatu...
متن کاملFormation of Apatite Coatings on an Artificial Ligament Using a Plasma- and Precursor-Assisted Biomimetic Process
A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment) to crea...
متن کاملBiomimetic apatite deposition on polymeric microspheres treated with a calcium silicate solution.
Bioactive polymeric microspheres can be prepared by means of coating them with a calcium silicate solution and subsequently soaking in a simulated body fluid (SBF). Such combination should allow for the development of bioactive microspheres for several applications in the medical field including tissue engineering carriers. Four types of polymeric microspheres, with different sizes, were used i...
متن کاملNucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions.
Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology. To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied biomaterials & biomechanics : JABB
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2009